White Paper & Recommendations on Implementing Historian Data Compression

Historian Data Compression

What is Compression?

Most people are familiar with file compression using utilities like “Winzip.” The Proficy Historian does compress off-line archive files using a zip utility, but that is not what we mean by data compression. For a process historian, the term data compression typically refers to the methods used to minimize the number of data points that need to be stored without losing “too much” information. This is necessary because process values are typically polled on a regular time interval and we would not want to store a value unless it actually represents meaningful information. For example, if a temperature transmitter has not changed over the preceding hour there is no point in store the same value every 5 seconds. It wastes space and does not add any new information.

Types of compression

The Proficy Historian has three fundamental methods for compressing data:

· Collector compression – often called, “dead banding”
· Archive compression – a “rate of change” analysis

· Scaled floats – a method for storing a floating-point value in about half the space that would normally be required

These methods can be used in combination or individually on a tag-by-tag basis as desired.

In addition, both collector and archive compression have a “time out” feature, which can force a value to be stored regardless of the current value.

Collector compression (“dead banding”)

Collector compression, commonly called “dead banding” is the most common form of data compression. It works be filtering out any data that does not exceed a preset limit centered on the last stored value. For example, suppose an historian tag is collecting data from a temperature transmitter with a range from 32 to 212 °F and a collector compression of +/- 5°F. With compression turned on, the historian will not store any data point that is not greater than or less than 5°F than the last stored value.

Collector compression is useful for:

· Filtering background noise

· Storing only significant process changes

· Storing a value only when it changes

A common question is, “how much space will I save with collector compression?” In truth, this is a hard question to answer as it depends entirely on system configuration, sample rate and the signal condition. At a minimum, collector compression prevents the storage of redundant data – storing the same unchanging value every poll cycle. However, collector compression is particularly effective as a “first pass” filter to remove noise the masks the true value.
For example, assume that you are collecting the discharge pressure of a pump that fluctuates by +/- 10%. Figure 1 represents how the signal might look to the historian. Over a period of 8 minutes the pump pressure is held constant, but due to random noise 97 values are stored and the resultant curve hides the true nature of the signal. Now look at Figure 2. This the same signal with a 22% dead band. Over the same period only 15 samples were stored for an efficiency of 85%. In addition, the plot looks much simpler with only large fluctuations indicated.
If we were collecting this value for a year, instead of requiring over 30 MB for just that one pump, we would only need 4.5 MB!

[image: image1.emf]Effect of Collector Compression (Dead Banding) on Data Collection

-50.00

-30.00

-10.00

10.00

30.00

50.00

70.00

90.00

110.00

130.00

150.00

7:59:31 8:00:58 8:02:24 8:03:50 8:05:17 8:06:43 8:08:10 8:09:36

Polled Samples

Coll. Comp. Stored Pts.

Coll. Comp. Trend

Figure 1 -- Constant value with 10% noise (97 stored samples)

[image: image2.emf]Effect of Collector Compression (Dead Banding) on Data Collection

-50.00

0.00

50.00

100.00

150.00

200.00

7:59:31 8:00:58 8:02:24 8:03:50 8:05:17 8:06:43 8:08:10 8:09:36

Polled Samples

Coll. Comp. Stored Pts.

Coll. Comp. Trend

Figure 2 -- Constant value with 10% noise, with collector compression (15 stored samples)
Another advantage of collector compression is that all of the filtering is done by the data collectors. If a value does not exceed the dead band the collector tosses it and does not send it to the historian server. This can significantly reduce unnecessary network traffic as well as free up the historian server for processing other tasks.

Archive compression (rate of change)

Archive compression is a very sophisticated method for analyzing the incoming data and only storing values when the rate of change (slope) of the signal exceeds a user configurable limit.

Refer to Figure 3. The archive point is the last value that was stored in the historian. As each new value arrives a slope is calculated between the last archive point and the new value and then compared to the slope between the archived point and the previously received (“held”) value. If the slope exceeds the upper or lower limits then the held value is archived and the “new point” becomes the held point against which the next value is compared. If it did not exceed either limit, then the previous held point is deleted and the new point becomes the next held point.

[image: image3]
Figure 3 -- Archive Compression "Critical Aperture Convergence"
The whole point behind archive compression is to just store the inflection points where a signal changes direction. This can have a significant improvement in disk efficiency while still retaining the same look of a signal.

Let’s look at another example – in this case a simple sine wave. Even with a 10% collector compression we still only see a 38% efficiency. The widely varying nature of the signal makes it very difficult to get any higher. But, notice how the signal is nearly linear between each of the peaks and troughs? This is where archive compression can significantly improve storage efficiency.
[image: image4.emf]Effect of Collector Compression (Dead Banding) on Data Collection

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

7:59:31 8:00:58 8:02:24 8:03:50 8:05:17 8:06:43 8:08:10 8:09:36

Polled Samples

Coll. Comp. Stored Pts.

Coll. Comp. Trend

Figure 4 -- Sine wave with 10% collector compression (60 samples, 38% efficiency)

Figure 5 shows the same sine wave but with a 3% archive compression. Storage efficiency has now increased to over 79% and the shape of the curve is essentially unchanged.

[image: image5.emf]Effect of Archive Compression on Data Collection

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

7:59:31 8:00:58 8:02:24 8:03:50 8:05:17 8:06:43 8:08:10 8:09:36

Polled Samples

Archive Comp. Stored Pt.

Archive Comp. Trend Line

Figure 5 -- Effect of Archive Compression on collection (20 samples, 79% efficiency)

In fact, if we weren’t interested in the shape, but just the high and low points we could increase archive compression even higher to 8% for a further increase to almost 92% efficiency. (But, as indicated in the chart, our sine wave would look a lot like a triangle wave)

[image: image6.emf]Effect of Archive Compression on Data Collection

-50.00

0.00

50.00

100.00

150.00

200.00

250.00

7:59:31 8:00:58 8:02:24 8:03:50 8:05:17 8:06:43 8:08:10 8:09:36

Polled Samples

Archive Comp. Stored Pt.

Archive Comp. Trend Line

Figure 6 -- Effect of 8% archive compression on a sin wave input (8 samples, 91.75% efficiency)
One downside of archive compression, however, is that the held data value is not returned in raw data queries such as the “Sample” query used in many iFIX charts. An interpolated trend does not have this problem, but this can be a potential source for confusion.
Scaled Integer

So far we have talked about compression methods that use an algorithm to determine whether or not data should be stored. The scaled integer data type is a method to reduce the footprint of the data to only (about) 3 bytes per value. Floating point values consume (about) 5 bytes per value, so this represents a 40% efficiency.

This is accomplished by positioning a floating point value along the high and low engineering units of the value. This does reduce the precision of the stored value since 2 bytes of information was “lost.” However, it’s important to realize that the vast majority of process signals are 4 – 20 mA signals which originally only had 2 bytes precision. So, even though a SCADA or OPC system might represent the data as a 4 byte float, the extra 2 bytes are not meaningful.

Thus, so long as we use the same input scaling for the historian as is used for the transmitter, storing the data in 2 bytes does represent any loss in precision or accuracy.
Recommendations

Implementing a good compression configuration takes a little time, but delivers enormous dividends over the long term. The historian system uses a minimum of disk space and provides superior performance.
To best implement a configuration that strikes the right compromise between data efficiency and precision we should evaluate the following:

· Determine which signals are on a 4-20mA loop and store them as scaled integer types
· Determine the noise in typical system loops and use that as the baseline for collector compression.

· At a minimum, all tags should have a collector dead band configured so that only data changes are recorded

· Implement an archive compression setting commensurate with the expected variation of the signal. Values of 1% - 5% are recommended for initial scoping, but we should test and validate on several representative tags.

· Both collector & archive compression have a “time-out” feature which ensures that a value is stored regardless if it has exceeded a limit. We need to determine if this feature will be used and what a good time-out value should be for Wyeth.

_

N

_

U

_

L

Archived Point

Held Point

New Point

Stephen Friedenthal
Page 3 of 5
5/25/2007

